Qus : 1
2 The expression \frac{tanA}{1-cotA}+\frac{cotA}{1-tanA} can be written as
1 sinA cosA + 1 2 secA cosecA + 1 3 tanA + cotA 4 secA + cosecA Go to Discussion
Solution
Qus : 2
1 Angle of elevation of the top of the tower from 3
points (collinear) A, B and C on a road leading to the
foot of the tower are 30°, 45° and 60°, respectively.
The ratio of AB and BC is
1 \sqrt(3):1 2 \sqrt(3):2 3 1:\sqrt(3) 4 2:\sqrt(3) Go to Discussion
Solution According to the given information, the figure should be as follows.
Let the height of tower = h
Qus : 3
1 If 3 sin x + 4 cos x = 5 , then 6tan\frac{x}{2}-9tan^2\frac{x}{2}
1 1 2 3 3 4 4 6 Go to Discussion
Qus : 4
3
Largest value of cos^2\theta -6sin\theta cos\theta+3sin^2\theta+2 is
1 4 2 0 3 4+\sqrt{10} 4 4-\sqrt{10} Go to Discussion
Solution Qus : 5
1
Number of point of which f(x) is not differentiable f(x)=|cosx|+3 in [-\pi, \pi]
1 2 2 3 3 4 4 None of these Go to Discussion
Solution
Points of Non-Differentiability of f(x) = |\cos x| + 3
Step 1: \cos x is differentiable everywhere, but |\cos x| is not differentiable where \cos x = 0 .
Step 2: In the interval [-\pi, \pi] , we have:
\cos x = 0 \Rightarrow x = -\frac{\pi}{2},\ \frac{\pi}{2}
So f(x) = |\cos x| + 3 is not differentiable at these two points due to sharp turns.
✅ Final Answer:
\boxed{2 \text{ points}}
Qus : 6
2 If A > 0, B > 0 and A + B = \frac{\pi}{6} , then the minimum value of tanA + tanB
1 \sqrt{3}-\sqrt{2}
2 \sqrt{3}-2\sqrt{3} 3 \frac{2}{\sqrt{3}} 4 \sqrt{2}-\sqrt{3} Go to Discussion
Solution On differentiating x= tanA + tan(π/6-A)
we get :
dx/dA = sec²A-sec²(π/6-A)
now putting
dx/dA=0
we get
cos²(A) = cos²(π/6-A) so 0≤A≤π/6
therefore
A=π/6-A from here we get A = π/12 = B
so minimum value of that function is
2tanπ/12 which is equal to 2(2-√3)
Qus : 8
3 If cosec\theta-cot \theta=2 , then the value of cosec\theta is
1 5/2 2 3/5 3 4/5 4 5/4 Go to Discussion
Solution Qus : 9
1 The solution of the equation {4\cos }^2x+6{\sin }^2x=5 are
1 x=n\pi\pm\frac{\pi}{4} 2 x=n\pi\pm\frac{\pi}{3} 3 x=n\pi\pm\frac{\pi}{2} 4 x=n\pi\pm\frac{2\pi}{3} Go to Discussion
Qus : 10
4 The value of \tan \Bigg{(}\frac{\pi}{4}+\theta\Bigg{)}\tan \Bigg{(}\frac{3\pi}{4}+\theta\Bigg{)} is
1 -2 2 2 3 1 4 -1 Go to Discussion
Solution
We are given:
\text{Evaluate } \tan\left(\frac{\pi}{4} + \theta\right) \cdot \tan\left(\frac{3\pi}{4} + \theta\right)
✳ Step 1: Use identity
\tan\left(A + B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
But we don’t need expansion — use known angle values:
\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta}
\tan\left(\frac{3\pi}{4} + \theta\right) = \frac{-1 + \tan\theta}{1 + \tan\theta}
✳ Step 2: Multiply
\left(\frac{1 + \tan\theta}{1 - \tan\theta}\right) \cdot \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right)
Simplify:
= \frac{(1 + \tan\theta)(-1 + \tan\theta)}{(1 - \tan\theta)(1 + \tan\theta)}
= \frac{(\tan^2\theta - 1)}{1 - \tan^2\theta} = \boxed{-1}
✅ Final Answer:
\boxed{-1}
Qus : 11
4 If \sin x=\sin y and \cos x=\cos y , then the value of x-y is
1 \pi/4 2 n \pi/2 3 n \pi 4 2n \pi Go to Discussion
Solution
Given:
\sin x = \sin y \quad \text{and} \quad \cos x = \cos y
✳ Step 1: Use the identity for sine
\sin x = \sin y \Rightarrow x = y + 2n\pi \quad \text{or} \quad x = \pi - y + 2n\pi
✳ Step 2: Use the identity for cosine
\cos x = \cos y \Rightarrow x = y + 2m\pi \quad \text{or} \quad x = -y + 2m\pi
? Combine both conditions
For both \sin x = \sin y and \cos x = \cos y to be true, the only consistent solution is:
x = y + 2n\pi \Rightarrow x - y = 2n\pi
✅ Final Answer:
\boxed{x - y = 2n\pi \quad \text{for } n \in \mathbb{Z}}
Qus : 12
1 If a_1, a_2, a_3,...a_n , are in Arithmetic Progression
with common difference d, then the sum (sind) (cosec a_1 . cosec a_2+cosec a_2.cosec a_2+...+cosec a_{n-1}.cosec a_n) is equal to
1 cot a_1 - cot a_n 2 sin a_1 - sin a_n 3 cosec a_1 - cosec a_n 4 a_1-a_n Go to Discussion
Solution Qus : 13
2 In a ΔABC, if \tan ^2\frac{A}{2}+\tan ^2\frac{B}{2}+\tan ^2\frac{C}{2}=k , then k is always
1 >1 2 \geq 1 3 =2 4 =1 Go to Discussion
Solution Qus : 14
3 The general value of \theta , satisfying the equation \sin \theta=\frac{-1}{2},\, \tan \theta=\frac{1}{\sqrt[]{3}}
1 n\pi+\frac{\pi}{6},n\in I 2 n\pi+{\lgroup{-1}\rgroup}^n(\frac{7\pi}{6}),n\in I 3 2n\pi+\frac{7\pi}{6},n\in I 4 2n\pi+\frac{11\pi}{6},n\in I Go to Discussion
Qus : 15
1 If
then the value of
is
1 38/3 2 38 3 114 4 None of these Go to Discussion
Solution Qus : 16
4 If tan x = - 3/4 and 3π/2 < x < 2π, then the value of sin2x is
1 7/25 2 -7/25 3 24/25 4 -24/25 Go to Discussion
Solution
Qus : 17
3 The value of \tan 9{^{\circ}}-\tan 27{^{\circ}}-\tan 63{^{\circ}}+\tan 81{^{\circ}} is equal to
1 5 2 3 3 4 4 6 Go to Discussion
Solution Qus : 18
3 If cosθ = 4/5 and cosϕ = 12/13, θ and ϕ both in the fourth quadrant, the value of cos( θ + ϕ )is
1 -16/65 2 -33/65 3 33/65 4 16/65 Go to Discussion
Solution
Qus : 20
3 Express (cos 5x – cos7x) as a product of sines or cosines or sines and cosines,
1 2 cos4x cosx 2 2 sin 4x sin x 3 2 sin 6x sin x 4 2 cos 6x cos x Go to Discussion
Solution
Qus : 21
2 If 32\, \tan ^8\theta=2\cos ^2\alpha-3\cos \alpha and 3\, \cos \, 2\theta=1 , then the general value of \alpha =
1 n\pi\pm\frac{\pi}{3} 2 2n\pi\pm\frac{2\pi}{3} 3 2n\pi\pm\frac{\pi}{3} 4 n\pi\pm\frac{2\pi}{3} Go to Discussion
Qus : 22
3 If |k|=5 and 0° ≤ θ ≤ 360°, then the number of distinct solutions of 3cosθ + 4sinθ = k is
NIMCET 2021
1 0 2 1 3 2 4 infinite Go to Discussion
Qus : 24
3 If a\, \cos \theta+b\, \sin \, \theta=2 and a\, \sin \, \theta-b\, \cos \, \theta=3 , then {a}^{2^{}}+{b}^2=
1 6 2 5 3 13 4 10 Go to Discussion
Solution Qus : 25
3 The value of tan 1° tan 2° tan 3° ... tan 89° is:
1 0 2 \frac{1}{\sqrt{2}} 3 1 4 2 Go to Discussion
Solution Qus : 26
2 If P=sin^{20} \theta + cos^{48} \theta then the inequality that holds for all values of is
1 P\geq 1 2 0<P\leq 1 3 1 < P < 3 4 0\leq P \leq 1 Go to Discussion
Solution Qus : 27
2 If sin x + a cos x = b , then |a sin x - cos x| is:
1 \sqrt{a^{2}+b^{2}+1} 2 \sqrt{a^{2}-b^{2}+1} 3 \sqrt{a^{2}+b^{2}-1} 4 None of above Go to Discussion
Solution Qus : 28
1 If 0 < x < \pi and cos x + sin x = \frac{1}{2} , then the value of tan x is
1 \frac{4-\sqrt{7}}{3} 2 \frac{4+\sqrt{7}}{3} 3 \frac{1+\sqrt{7}}{4} 4 \frac{1-\sqrt{7}}{4} Go to Discussion
Solution Qus : 29
1 If tan A - tan B = x and cot B - cot A = y, then cot (A - B) is equal to
1 \frac{1}{x}+\frac{1}{y} 2 \frac{1}{x}-\frac{1}{y} 3 -\frac{1}{x}+\frac{1}{y} 4 -\frac{1}{x}-\frac{1}{y} Go to Discussion
Solution Qus : 30
3 The value of sin 20° sin 40° sin 80° is
1 \frac{1}{2} 2 \frac{\sqrt{3}}{2} 3 \frac{\sqrt{3}}{8} 4 \frac{1}{8} Go to Discussion
Solution Qus : 31
3 In a right angled triangle, the hypotenuse is four times the perpendicular drawn to it from the opposite vertex. The value of one of the acute angles is
1 45^{o} 2 30^{o} 3 15^{o} 4 None of these Go to Discussion
Solution Qus : 32
2 If \prod ^n_{i=1}\tan ({{\alpha}}_i)=1\, \forall{{\alpha}}_i\, \in\Bigg{[}0,\, \frac{\pi}{2}\Bigg{]} where i=1,2,3,...,n. Then maximum value of \prod ^n_{i=1}\sin ({{\alpha}}_i) .
1 \frac{1}{2^n} 2 \frac{1}{2^{n/2}} 3 1 4 None of these Go to Discussion
Solution Qus : 33
4 Solve the equation sin2 x - sinx - 2 = 0 for for x on
the interval 0 ≤ x < 2π
1 2 3 4 None of these Go to Discussion
Solution Qus : 34
1 If \frac{tanx}{2}=\frac{tanx}{3}=\frac{tanx}{5} and x + y + z = π, then the
value of tan2 x + tan2 y + tan2 z is
1 38/3 2 38 3 114 4 None of these Go to Discussion
Solution Qus : 35
1 Find the value of sin 12°sin 48°sin 54°
1 1/8 2 1/6 3 1/2 4 1/4 Go to Discussion
Solution Qus : 37
1 The value of tan(\frac{7\pi}{8}) is
1 1-\sqrt{2} 2 1+\sqrt{2} 3 \sqrt{2}+\sqrt{3} 4 \sqrt{2}-\sqrt{3} Go to Discussion
Solution Qus : 38
2 The value of
is
1 tanθ - secθ 2 tanθ + secθ 3 cotθ - secθ 4 cotθ + secθ Go to Discussion
Qus : 39
4 The value of sin 10°sin 50°sin 70° is
1 1/4 2 1/2 3 3/4 4 1/8 Go to Discussion
Solution sin10° sin50° sin70°
= sin10° sin(60°−10°) sin(60°+10°)
= 1/4 sin3x10°
=1/4x1/2=1/8
[{"qus_id":"3791","year":"2018"},{"qus_id":"3764","year":"2018"},{"qus_id":"3904","year":"2019"},{"qus_id":"3920","year":"2019"},{"qus_id":"4281","year":"2017"},{"qus_id":"4283","year":"2017"},{"qus_id":"4284","year":"2017"},{"qus_id":"4285","year":"2017"},{"qus_id":"9466","year":"2020"},{"qus_id":"9467","year":"2020"},{"qus_id":"9468","year":"2020"},{"qus_id":"9469","year":"2020"},{"qus_id":"9470","year":"2020"},{"qus_id":"9471","year":"2020"},{"qus_id":"9472","year":"2020"},{"qus_id":"9473","year":"2020"},{"qus_id":"9477","year":"2020"},{"qus_id":"10432","year":"2021"},{"qus_id":"10667","year":"2021"},{"qus_id":"10674","year":"2021"},{"qus_id":"10682","year":"2021"},{"qus_id":"10686","year":"2021"},{"qus_id":"10707","year":"2021"},{"qus_id":"11121","year":"2022"},{"qus_id":"11122","year":"2022"},{"qus_id":"11143","year":"2022"},{"qus_id":"11512","year":"2023"},{"qus_id":"11526","year":"2023"},{"qus_id":"11535","year":"2023"},{"qus_id":"11640","year":"2024"},{"qus_id":"11641","year":"2024"},{"qus_id":"10201","year":"2015"},{"qus_id":"10212","year":"2015"},{"qus_id":"10229","year":"2015"},{"qus_id":"10237","year":"2015"},{"qus_id":"10452","year":"2014"},{"qus_id":"10462","year":"2014"},{"qus_id":"10476","year":"2014"},{"qus_id":"10480","year":"2014"}]